

INTELLIGENT SYSTEMS (CSE-303-F)

Section C

Partial Order Planning

Partial Ordering

 Any planning algorithm

 that can place two actions into a plan without

specifying which comes first is called a partial-

order planner.

 actions dependent on each other are ordered in

relation to themselves but not necessarily in

relation to other independent actions.

 The solution is represented as a graph of

actions, not a sequence of actions.

Cont..

 Let us define following two macros for the sake of

simplicity for block world example.

Macro Operator Description

Body

MOT(X) Move X onto table US(X, _), PD(X)

MOVE(X, Y) Move X onto Y PU(X), ST(X, Y)

Cont…

 To achieve Goal state ON(a,b),

 move ‘b’ onto table should occur before move ‘a’ to ‘b’

 Hence partial ordering MOT(b)  MOVE(a, b) holds true

 MOT(b) should come before MOVE(a, b) in the final plan.

 Similarly to achieve Goal state ON(c,d),

 partial order MOT(d)  MOVE(c, d) is established.

Start State Goal State

 b d a c

 
 a c b d

 _____________ _____________

Partial Graph

 Partial graph contains the dummy actions START and FINISH to
mark the beginning and end of the plan in the graph.

 The planner can generate total plans from the graph.

 START

MOT(b) MOT(d)

MOVE(a, b) MOVE(c, d)

FINISH

Total Plans Generation

 From this representation total six plans are generated.

 Each of these is called a linearization of the partial-order

plan.

Different Total Plans

Plan1 Plan2 Plan3 Plan4 Plan5 Plan6

MOT(b)

MOVE(a, b)

MOT(d)

MOVE(c, d)

MOT(b)

MOT(d)

MOVE(a, b)

MOVE(c, d)

MOT(b)

MOT(d)

MOVE(c, d)

MOVE(a, b)

MOT(d)

MOVE(c, d)

MOT(b)

MOVE(a, b)

MOT(d)

MOT(b)

MOVE(c, d)

MOVE(a, b)

MOT(d)

MOT(b)

MOVE(a, b)

MOVE(c, d)

Nonlinear Planning - Constraint Posting

 Idea of constraint posting is to build up a plan
by incrementally

 hypothesizing operators,

 partial ordering between operators and

 binding of variables within operators

 At any given time in planning process, a
solution is a partially ordered.

 To generate actual plan, convert the partial
order into total orders.

Steps in Non Linear Plan Generation

 Step addition

 Creating new operator (step) for a plan

 Promotion

 Constraining one operator to come before another in final
plan

 Declobbering

 Placing operator Op2 between two operators Op1 and Op3
such that Op2 reasserts some pre conditions of Op3 that
was negated by Op1

 Simple Establishment

 Assigning a value to a variable, in order to ensure the pre
conditions of some step.

Algorithm

1. Initialize S to be set of propositions in the goal state.

2. Remove some unachieved proposition P from S.

3. Achieve P by using step addition, promotion, declobbering,
simple establishment.

4. Review all the steps in the plan, including any new steps
introduced by step addition to see if any of their preconditions
are unachieved.

5. Add to S the new set of unachieved preconditions.

6. If S = , complete the plan by converting the partial order of
steps into a total order and instantiate any variables as
necessary and exit.

7. Otherwise go to step 2.

Example: Sussman anomaly problem

 Begin with null plan (no operators).

 Look at the goal state and find the operators that can achieve
them.

 There are two operators (steps) ST(A, B) and ST(B,C) which
have post conditions as ON(A,B) and ON(B, C).

 Initial State (State0) Goal State

Initial State: ON(C, A)  ONT(A)  ONT(B)  AE  CL(C)  CL(B)

Goal State: ON(A, B)  ON(B, C)

C

A B

A

B

C

Cont…

Pre Cond CL(B) CL(C)

 *HOLD(A) *HOLD(B)

Operator ST(A, B) ST(B,C)

 ON(A, B) ON(B,C)

Post Cond AE AE

 ~ CL(B) ~ CL(C)

 ~ HOLD(A) ~ HOLD(B)

__

 Here unachieved conditions are marked with *.

 HOLD in both the cases is not true as AE is true initially.

 Introduce new operator (step) to achieve these goals.

 This is called operator (step) addition.

 Add PU operator on both the goals.

Cont...

Pre Con *CL(A) *CL(B)

 ONT(A) ONT(B)

 *AE *AE

Operator PU(A) PU(B)

Post Cond HOLD(A) HOLD(B)

 ~ ONT(A) ~ ONT(B)

 ~ AE ~ AE

 ~ CL(A) ~ CL(B)

__

Pre Con CL(B) CL(C)

 *HOLD(A) *HOLD(B)

Operator ST(A, B) ST(B,C)

 ON(A, B) ON(B,C)

Post Cond AE AE

 ~ CL(B) ~ CL(C)

 ~ HOLD(A) ~ HOLD(B)

Cont..

 It is clear that in a final plan, PU must precede STACK operator.

 Introduce the ordering as follows:
 Whenever we employ operator, we need to introduce ordering

constraints called promotion.
___________________Plan 1____________________

 PU(A)  ST(A, B)

 PU(B)  ST(B, C)

 Here we partially ordered operators and four unachieved pre
conditions:- CL(A), CL(B), AE on both the paths
 CL(A) is unachieved as C is on A in initial state.

 Also CL(B) is unachieved even though top of B is clear in initial
state but there exist a operator ST(A,B) with post condition as
~CL(B).

Initial State: ON(C, A) ONT(A)  ONT(B)  AE  CL(C)  CL(B)

Cont..

 If we make sure that PU(B) precede ST(A, B) then CL(B) is
achieved. So post the following constraints.

___________________Plan 1____________________

 PU(A)  ST(A, B)

 PU(B)  ST(B, C)

____________________Plan2____________________

 PU(B)  ST(A, B)

 Note that pre cond CL(A) of PU(A) still is unachieved.

 Let us achieve AE preconditions of each Pick up operators
before CL(A).

 Initial state has AE. So one PU can achieve its pre cond but
other PU operator could be prevented from being executed.

 Assume AE is achieved as pre condition of PU(B) as its other
preconditions have been achieved. So put constraint.

Cont..

 Similarly, following plans are generated

___________________Plan3___________________

 PU(B)  PU(A) (pre conds of PU(A) are not still achieved.)

 Since PU(B) makes ~AE and ST(B,C) will make AE which is
precondition of PU(A), we can put the following constraint.

_________________Plan4________________________

 PU(B)  ST(B, C)  PU(A)

__

 Here PU(B) is said to clobber pre condition of PU(A) and
ST(B, C) is said to declobber it. (removing deadlock)

Cont..

_________________Plan 5_________________

 US(C, A)  ST(B, C)

 US(C, A)  PU(A)

 US(C, A)  PU(B)

__

 Declobbering:

_______________Plan 6_________________

 US(C, A)  PD(C)  PU(B)

Cont..

 Combine the following partial plans to generate final plan.
__

 PU(A)  ST(A, B)

 PU(B)  ST(B, C)

 PU(B)  ST(A, B)
__

 PU(B)  PU(A)

 (pre conds of PU(A) are not still achieved.)

 PU(B)  ST(B, C)  PU(A)
__

 US(C, A)  ST(B, C)

 US(C, A)  PU(A)

 US(C, A)  PU(B)
__

 US(C, A)  PD(C)  PU(B)
__

 Final plan: US(C,A)  PD(C)  PU(B)  ST(B,C)  PU(A)  ST(A,B)

Learning Plans

 In many problems, plans may share a large number of
common sequence of actions.

 So planner requires the ability to recall and modify or reuse the
existing plans.

 Macro operators can be defined as sequence of operators for
performing some task and saved for future use.

 Example:

 Reverse_blocks(X, Y) can be macro operator with plan –

US(X, Y), PD(X), PU(Y), ST(Y, X), where X, Y are variables.

 The generalized plan schema is called MACROP and is stored
in a data structure called Triangle table.

 It helps planner to build new plans efficiently by using existing
plans.

X Y

Y X

Reversing the blocks

Triangle Table

 A useful graphical mechanism to

 show the plan evolution as well as link the
succession of operators in a triangle table.

 The structure of the table is staircase type
which gives compact summary of the plan.

 Let us use the following acronyms.
 A(OP)  add-list of OP

 CC  copy content of above cell

 D(OP)  del-list of OP

Triangle Table – cont…

 j = 0

 j = 1

i = 0 Start state OP1

 j = 2

i = 1 CC – D(OP1) A(OP1) OP2

i = 2 CC – D(OP2) CC – D(OP2) A(OP2)

 j = k

 OPk

i = k CC – D(OPk) CC – D(OPk) CC – D(OPk) A(OPk)

Cont..

 Each column of the table is headed by
 one of the operators in the plan in the order of their

occurrence.

 The table displays the preconditions of each
operator.

 The cells below each operator OP contains
 predicates added by the operator.

 The cells left to the cell mentioned below OP
contains
 predicates that are preconditions of OP.

Rules for forming such tables

 Given a plan requiring the successive use of k
operators, Op1, Op2, …Opk, the table is constructed
as follows:

 The triangle table is constructed that consists of (k+1)
rows and columns.

 The columns are indexed by ‘j’ from left to right and
rows indexed by ‘i’ from top to bottom with values 0 to
k.

 The construction of triangle table starts with Cell(0, 0)
containing the start state predicates.

Cont…

 Traverse the columns from top to bottom

 having reduction in the system state entries due
to the succession of operator del-list
applications.

 Finally when the table is complete,

 the union of the facts in the bottom row (n = k)
represents the goal state.

 Let us consider macro-operator “reverse” with the
sequence of operators as:

 US(X,Y), PD(X), PU(Y), S(Y,X)

 Here X and Y are variables and can be bound
with actual objects.

Algorithm for Triangle Table

 Entries in the cells are made as follows:

 Cell(0,0) contains the start state

 In Cell(k, k), for k > 0, contains add-list of operator
OPk.

 For each cell Cell(i, j), i > j, copy the contents of
Cell(i-1, j) with del-list of operator OPj removed.

Cont..

 m =0 m=1 m=2 m=3 m=4

n = 0 O(X, Y),

 C(X), T(Y), AE US(X, Y)

n = 1 C(X), T(Y) H(X), C(Y) PD(X)

n = 2 C(X), T(Y) C(Y) T(X), AE PU(Y)

n = 3 C(X) T(X) H(Y) ST(Y, X)

n = 4 T(X) O(Y, X),

 AE, C(Y)

 REVERSE (X,Y)

